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A simple model is considered for a spaceship (SS) of changing configuration, consisting of a rigid body to which two rods are 
attached by cylindrical hi,ages. While performing certain technical tasks the spaceship is brought into a state of permanent rotation 
about an axis. It is shov~l that, for certain values of the structural parameters, such a rotation can be gyroscopically stabilized. 
A qualitative analysis of the range of gyroscopic stabilization in parameter space is carried out. 

Analyses of the staL',ility of rotation of a spaceship modelled by a system of rigid bodies generally con- 
eentrate on the secular stability [1-3]. As a rule, the possibility of uniform rotation "generates" cyclic 
coordinates, and the stability of rotation of such systems may be associated with gyroscopic stabilization 
[4]. This interesting phenomenon is all but ignored in spaceship dynamics, though it may prove useful 
from a practical point of view.¢ On the other hand, one could hardly expect to get clear results when 
confined to spaceship models of the type used in [1, 2], since they possess high dimensionality and involve 
many parameters. ,~my analysis of the prospects of gyroscopic stabilization of the permanent rotation 
of a system of rigid bodies should start out, therefore, from a simpler model. 

1. FORMULATION OF THE PROBLEM. 

Let Q be an axially symmetric body fixed at some point O on its axis of symmetry Oz (see Fig. 1). 
Two identical rigid rods Q1 and Q2 of length L and mass m are attached to Q at points O1 and 
02 (10011 = 10021 = R) by cylindrical hinges. The points O1, O and 02 lie on a single straight line Oy 
(Oy .1_ Oz), and the axes of a hinges are parallel to the Ox axis, which, together with Oz and Oy, forms 
a system of coordinates attached to Q. 

The three-body system thus constructed has five degrees of freedom, and its position relative to the 
fixed axes OXYZ may be described by five generalized coordinates: 0---the angle between the OX ads 
and the Zx plane, the angle of rotation of the entire system about the Oz axis, a cyclic coordinate; I]'--- 
the angle between the Ox axis and the XY plane; ¢x--the angle between the Oz axis and the Zx plane 
(see Fig. 2). Consequently, the Krylov angles ¢x and I~ determine the orientation of the Oz axis in some 
fixed system of coordinates OZxffl which is rotating about the fixed OZ axis at angular velocity 0". The 
position of the rods relative to the body Q is defined by angles 91 and ~ (Fig. 1). 

We shall assume throughout that there are no forces applied and that there is no friction at the hinges. 
One of the possible motions of the system is, of course, uniform rotation as a single body about the 

Oz axis, which is fixed in space, at angular velocity 0 = o~ = const. In that case the rods take positions 
along the axis Oy (tpl = ¢P2 = 0). 

Any formulation of the stability problem for this rotation must take into consideration that the angular 
momentum vector G of the "body-rods" system is constant in magnitude and direction. Hence the fixed 
OZ axis must point along G. 

We shall also use the change of variables 

9 = qh + tp2, V = t#l - tp2 

t_PriM. Mat. Mekh. VoL 59, No. 3, pp. 385-390, 1995. 
:~On some manifestations of gyroscopic stabilization see BELETSKII V. V., Applied problems of stability. Preprint No. 121, 

Moscow, Inst. Prikl. Mat. im M. V. Keldysha Akad. Nauk SSSR, 1, 1990. 
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Fig. 1. Fig. 2. 

as is usual in dealing with such systems, and investigate the stability of rotation of  the system to 
perturbations of the quantities ~ I~, o~', I}', (P, ¥,  9", ¥' .  Linearizing the equations of  motion of the system 
with respect to these quantities and using matrix notation, we obtain 

Ax'" + F0~x" + KtO2x = 0 

A= aiy l, F =  gij, K=IK01 (1.1) x ll l 
mff m(L + 2 R) 2 

all  = 11 + 6 + 2 ' a 2 2  = 11 

m L  2 
a33 = a44 = , aj3=a31=mL(L+2R)/4 

8 

g 1 2 = - g 2 1 = 2 1 j - 1 3 ,  g23=-g32=mL2/12  

Kll = 13 - I I + mL 2 / 6 + m(L + 2R) 2 / 2, K22 = 13 - I 1 

K33 =K44 =mL(2L+3R)/12, Ki3 =K31 =mL(2L+3R)/6  

where 11 and/3 are the equatorial and axial moments of inertia of Q and the other coefficients of the 
matricesA, F and K are zeros. 

As Eqs (1.1), unlike the equations used in [1, 2], involve generalized coordinates, they can be 
interpreted [5] as the equations of motion of a certain ("reduced") mechanical system, in whichA plays 
the part of  the kinetic energy matrix and which is driven by linear potential (centrifugal) forces with 
matrix - K  and gyroscopic (Coriolis) forces with matrix -F.  As we know [4], these observations make 
it easier to analyse the conditions for the trivial solution of system (1.1) to be stable. 

2. T H E  S T A B I L I T Y  OF R E L A T I V E  E Q U I L I B R I U M  OF A R O D  

The last equation of system (1.1) splits off from the other equations, as is quite natural, since sym- 
metric vibrations of the rods do not make theaxis  of the body oscillate (and vice versa). Hence one 
condition for stability is K44 > 0. This condition obviously implies that the relative equilibrium of a rod 
is stable and formally defines two ranges of  admissible parameter values 
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(1) L > 0, (2) L < -3R/2 (2.1) 

Although the length of the rod is, of course, necessarily positive, negative values of the parameter 
L also admit of a perfectly reasonable interpretation. It can be shown that in order to investigate the 
stability of a configuration in which the rods point "into" the body, i.e. away from the points O1 and 
02 to the point O (91 = 92 = x), one need only interchange L and -L  in all the formulae. Henceforth, 
therefore, we shall allow the parameter L to vary from --** to +**, bearing in mind that the domain L 
> 0 corresponds to an "outside" position of the rods and the domain L < 0 to an "inside" position. 

Thus, the last equation of system (1.1) has a single degree of instability when 

-3R/2 < L < 0 (2.2) 

3. ANALYSIS OF POSITIONAL FORCES 

We will now consider the subsystem of three equations and single out the corresponding minor/(3 
of K 

i1:,,0:3 I K 3 = K22 

IIKi3 0 K33 

The degree of instability of the trivial solution of this subsystem equals the number of negative 
eigenvalues of/(3. It is clear that the conditions 

2 
K22=0, K33=0, A=KIIK33-KI3=O (3.1) 

define certain surfaces in parameter space which separate domains with different degrees of instability. 
Dimensionless p~trameters for the problem are 

b= 1-L-l, I=L/R, k=pR3/13 
13 

where p is the linear density of a rod (m = p I L I). 
Figure 3 gives a qualitative representation of a section of the surfaces (3.1) by a plane k = const. 

The section is projected onto the half-plane b I> -1/2, which is physically meaningful, as a certain family 
of lines. This family divides the half-plane into ten domains, in each of which the signs of the quantities 
K22, K33 and A form a different sequence; hence each domain represents a possibly different degree of 
instability both for the subsystem of the first three equations--N3, and for the full system (1.1) --N4 
(see Table I). 

~lz q ®® ® 6@ l 

q/z 
Fig. 3. 
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Table 1 

D o m a i n  K2 2 K3 3 A N 3 N 4 

1 .9  + + + 0 0 

2 , 6  - + + l I 

3 . 5  - + - 2 2 

4 - - + 3 4 

7 - - 2 3 

8 + - - I 2 

10  + + - 1 1 

First, one should note domains 1 and 9, in which the degree of instability is zero. As follows from 
the Kelvin--Chetayev theorems [4], addition of gyroscopic forces to the potential forces in these domains 
does not affect the stability of motion. Moreover, stability is also conserved if one adds dissipative forces 
depending on a', 13", ¥', ~', which were not included previously--provided the rotation of the system 
is not terminated by these forces. 

Curiously enough, when the rods are "outside" (L > 0), their lengths have no effect on stability; while 
in an "inside" position (L < 0) the rod length is constrained to remain between certain non-zero values. 

A decrease in the value ofk  "shifts" the right boundary of domain 3 to the right and the left boundary 
of domains 6 and 9 to the left. 

4. GYROSCOPIC STABILIZATION 

It is well known that the equilibrium of the reduced system, which is unstable under the action of 
several potential forces, can be stabilized by gyroscopic forces only in domains where the degree of 
instability is even. However, domains 4 and 8 must immediately be dismissed, since gyroscopic forces 
with matrix F have no effect on the nature of symmetric vibrations of the rods, as described by the 
coordinate ~ (see the last equation of system (1.1)). 

Thus, the property of gyroscopic stabilization may appear only in domains 3 and 5. To observe it one 
must analyse the roots of the secular equation of system (1.1) or, more precisely, of the subsystem of 
its first three equations, and determine in what parts of domains 3 and 5 the roots are purely imagin- 
ary. It is not particularly difficult to derive algebraic conditions for the roots to have these properties. 
However, these conditions, if expressed explicitly in terms of the parameters 1, b and k, are extremely 
cumbersome and will therefore not be presented here. 

Numerical computations carried out using the above formulae have the qualitative result that 
the stability conditions are satisfied, first, in domains 1 and 9, as might have been expected. Second, 
such conditions are satisfied in practically all of domain 3, i.e. gyroscopic stabilization is possible 
in this domain. As to domain 5, the possibility appears only in the small part shown hatched in 
Fig. 3. 

Some curious features are worthy of note. First, in an "outside" position of the rods, gyroscopic 
stabilization is achieved only provided the rod length has an upper limit (domain 3). In an "inside" 
position, conversely, the rod length must have a lower limit (domain 5). Second, if the rods are sufficiently 
long (near the right boundary for domain 3 and sufficiently far to the left for domain 5), the system 
rotates about the mean axis of inertia for the unperturbed form (K22 < 0, but Kll > 0). 

5. REDUCTION OF THE SYSTEM 

The system being studied here has an interesting property. 
Let G1 and G2 denote the projections of the angular momentum G on to the OXl and Oyl axes. It 

follows from the theorem on the variation of G that 

It can be verified that 

G i - t ~ G 2 = 0 ,  G ~ + o G 1 = 0  (5.1) 

Gl=alla" +a13w+k22o~, G2=a22~'+kjlt.Oa-k33t.o~ 
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and the first two equations of system (1.1) are identical with (5.1). Equations (5.1) have two obvious 
particular integral,; 

Gl( t )  =- O, G2(t)-  0 (5.2) 

This face is precisely what was actually exploited above when the fixed O z  axis was chosen, but up to 
this point it has not been utilized. The integrals (5.2) can be used to reduce the order of the dynamical 
system (1.1). 

For example, if there are no rods (m = 0) the coordinate tx (or 13) satisfies the equation of harmonic 
oscillations 

/~10t'" + 0)2(13 -- ll)2et = 0 

whether the body is "oblate" (13 > I1) or "prolate" (13 > I1)--an indication of the gyroscopic nature of 
the stabilization of the body's rotation about the major axis of its inertia ellipsoid. 

The use of particular integrals like (5.2) in the general case may alter the type of stability problem 
to be solved, since, formally speaking, this approach replaces the stability problem in all of phase space 
by the analogous problem on a certain manifold. In the case considered here, however, the two 
approaches are equivalent. The reduction only eliminates two of the natural frequencies of system (1.1), 
namely, _+to, corresponding to system (5.1). 

This equivalence has made it possible, in particular, to use (5.2) to eliminate (1) and 9" from the first 
two equations of system (1.1). The algebraic conditions for the stability of the trivial solution of the 
reduced system are also rather unwieldy, but numerical computations carded out with them have yielded 
the same results as for the full system. 

6. C O N C L U S I O N  

Thus, our analysis of a rotating many-body system has shown that, in a certain range of parameters, 
gyroscopic stabilization may appear. Of course, this stabilization may be adversely affected by dissip- 
ative forces such as friction in the springs. However, ff the latter are relatively small, one can expect 
the use of active means of control in a structure with parameters, say, in domain 3, to impose less stringent 
demands on control resources than in domain 2. Hence, when dealing with applied problems of the 
dynamics of a spaceship, it may prove useful to look for the possibility of gyroscopic stabilization. 
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